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Public-key cryptography

0: Public-Key Cryptography
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Public-key cryptography

Public-key cryptography

Universal introduction: Alice and Bob. Ingredients:
1 Picture of Alice in Wonderland (or Alice Cooper)
2 Picture of Bob Dylan, or Spongebob Squarepants.
3 “Alice wants to send a message to Bob”
4 “Alice uses Bob’s public key to encrypt the message,

Bob uses his private key to decrypt it”
5 Public keys state instances of hard computational

problems, private keys give the solutions.
6 Hard problems: Factoring, RSA Problem, Subset Sum,

Discrete Logarithm Problem, Closest Vector Problem,
Decoding Random Codes, Learning With Errors, ...
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Public-key cryptography

Stop!
PKC is a huge field of research,

overflowing with problems, protocols, and primitives.
It’s way too huge to tour in 90 minutes.

We’ll talk about two constructions that really matter
in the “real world”: key exchange and signatures.

We’ll restrict ourselves to one computational hard
problem: the Discrete Logarithm Problem (DLP).

(This is still more than enough trouble for 90 minutes.)
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The Discrete Logarithm Problem

1: Discrete Logarithms
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The Discrete Logarithm Problem

Let G = 〈P〉 be a (fixed) cyclic group of order N ,
with group law ⊕, identity 0, inverse 	.

Exponentiation (“scalar multiplication”) is

[m]P : P 7−→ P ⊕ · · · ⊕ P︸ ︷︷ ︸
m times

for m ∈ Z .

i.e.: G = 〈P〉 = {0,P , [2]P , [3]P , . . . , [N − 1]P}.

For the moment, G is a black-box group:
— Elements are identified with (log2 N)-bit labels
— Group law ⊕ is an oracle that takes the labels

of two elements and returns the label of their sum.

Polynomial time means polynomial in log2 N .
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The Discrete Logarithm Problem

Exponentiation is easy
We can compute any scalar multiple in O(log N) G-ops.

Algorithm 1 Classic double-and-add scalar multiplication

1: function NaiveMultiplication(m =
∑β−1

i=0 mi2
i ,P)

2: R ← OE
3: for i := β − 1 down to 0 do . invariant: R = [bm/2ic]P
4: R ← [2]R
5: if mi = 1 then . Danger! Branching leaks mi to side channels
6: R ← R ⊕ P
7: end if
8: end for
9: return R . R = [m]P

10: end function
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The Discrete Logarithm Problem

The Discrete Logarithm Problem

Given P and [x ]P , find x .

In any G, we can always solve the DLP in time O(
√

N).

Time-memory tradeoff:
Shanks’ Baby-step giant-step

Low-memory pseudo-random walks:
Pollard’s ρ and Kangaroo (λ)...

Shoup: if G is a black box group and N is prime,
then the DLP is in Ω(

√
N).
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The Discrete Logarithm Problem

The Silver–Pohlig–Hellman reduction

If we know N =
∏n

i=1 pei
i for primes pi and exponents ei

then we can solve any DLP in G
using O(

∑n
i=1 ei(log N +

√
pi)) G-operations.

Key point: The DLP in G is dominated by
the DLP in the largest prime-order subgroup of G.

For t-bit security in a DLP-based cryptosystem,
we need a generic G with prime order N ∼ 22t .
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The Discrete Logarithm Problem

Diffie–Hellman Key Exchange

Now Alice and Bob have a shared secret C = [ab]P .
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The Discrete Logarithm Problem

There are so many things wrong with that picture...

From top to bottom:
1 What’s this “random”? (Ask the NSA.)
2 A← [a]P , B ← [b]P : Assumes efficient side-channel-safe scalar

multiplication. Is this reasonable? (Yes: see later talks.)
3 Sending A, B : Trivial man in the middle.

We’re going to need some kind of authentication.
4 Security of shared secret [ab]P is based on the wrong problem.

Diffie–Hellman problem (given P , [a]P , [b]P , compute [ab]P)
instead of DLP (given P , [x ]P , compute x).
Reductions: DLP =⇒ CDHP obvious, CDHP =⇒ DHP tricky.

5 But first: even if we solve these theoretical problems,
we don’t have black-box groups in practice...
What about algorithms and security for concrete groups?
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Abstract → concrete

2: Abstract −→ Concrete
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Abstract → concrete

In an ideal world...

In practice we compute with concrete groups,
not abstract black-box groups.

To maximise cryptographic efficiency
(security level / key length ratio)

we need concrete groups that act like black box groups:

Prime (or almost-prime) order N

Elements stored in ∼ log2 N bits each

Operations computed in Õ(logc
2 N) bit-ops, c small

Best known DLP solutions in O(
√

N) G-ops
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Abstract → concrete

Concrete groups to model black box groups

Prime (or almost-prime) order N

Elements stored in ∼ log2 N bits each

Operations computed in Õ(logc
2 N) bit-ops, c small

Best known DLP solutions in O(
√

N) G-ops

Concretely: want ≥ 128 bits of security,
i.e. attackers need ≥ 2128 bit operations.

=⇒ prime order N ∼ 2256; ideally, elements in 256 bits.
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Abstract → concrete

Algebraic groups

Natural candidates: algebraic groups.

Elements = tuples of (finite) field elements (coordinates);

Operations = tuples of polynomials in the coordinates.

We work over Fq, where q is a power of p

Normally, p 6= 2, 3.

...in practice: q = p, p2, or 2n with n prime.

The main unit of measure is log q.

Smith (INRIA/LIX) ECC for basic public-key constructions Sibenik, 06/06/2016 15 / 45



Abstract → concrete

Additive groups of finite fields

Näıve attempt at a concrete cryptographic G:
The additive group Ga(Fq) = (Fq,+).

How do subgroups of Ga(Fq) measure up against black-box groups?

Prime order subgroups have order p, where q = pn. simple!

Storage log2 p bits ideal!

Group operations addition in Fq: O(log2 q) bit-ops great!

What about the DLP ? Division in Fq.
Euclidean algorithm =⇒ fast polynomial-time solution.

Smith (INRIA/LIX) ECC for basic public-key constructions Sibenik, 06/06/2016 16 / 45



Abstract → concrete

Multiplicative groups of finite fields

Second attempt at a concrete cryptographic G:
prime-order subgroups of Gm(Fq).

Historical choice of group
for Diffie–Hellman (1970s) and signatures (1980s).

How do subgroups of Gm(Fq) measure up against black-box groups?

Prime order N | (q − 1): need to choose q carefully

Storage ≥ log2 N + 1 bits (best case q = 2N + 1, N prime)

Group operations ∼ logc
2 N bit-ops (1 < c ≤ 2)

What about the DLP ? Good news for people who like bad news...
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Abstract → concrete

Discrete Logarithm hardness in finite fields
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Abstract → concrete

Discrete Logarithms in finite fields

This improvement isn’t just asymptotic/theoretical:

Finite Field Discrete Logarithm records have been
repeatedly and spectacularly broken since 2013.

The large characteristic case is still in L(1/3),
comparable with RSA, but

Finite Field Discrete Logs are on the way out
for cryptographic primitives.

(This is a big problem for pairing-based cryptography.)
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Elliptic Curves

3: Elliptic Curves
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Elliptic Curves

Elliptic curves

“Short Weierstrass” models: nonsingular plane cubics

E : y 2 = x3 + ax + b
where a and b are parameters in Fq

satisfying 4a3 + 27b2 6= 0 (nonsingularity)

Natural involution 	 : (x , y) 7→ (x ,−y) (negation)

We write E(Fq) for the set of points on E :

E(Fq) := {(α, β) ∈ F2
q : β2 = α3 + aα + b} ∪ {OE}

where OE is a unique point at infinity (zero element)

Store each (α, β) as (α, “sign” of β) using log2 q + 1 bits
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Elliptic Curves

Projective space

Consider the projective plane P2.

Two-dimensional, with three coordinates:

P2(Fq) =
{

(α : β : γ) ∈ F3
q \ {(0, 0, 0)}

}
/ ∼

where ∼ is the equivalence relation defined by

(α : β : γ) ∼ (λα : λβ : λγ) for all λ 6= 0 ∈ Fq .
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Elliptic Curves

Projective elliptic curves

Putting (x , y) = (X/Z ,Y /Z ) gives a projective model

E : Y 2Z = X 3 + aXZ 2 + bZ 3 ⊆ P2 .
Affine points (α, β) become projective points (α : β : 1)

The point at infinity OE is (0 : 1 : 0)
(it is the unique point with Z = 0)

Every other projective point (X : Y : Z ) on E
corresponds to a unique affine point (x , y) = (X/Z ,Y /Z )

This is not the only projective closure/model of E .
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Elliptic Curves

The group law

Every line intersects E in exactly three (multiple?) points.

If two of the points are in E(Fq), then so is the third.

The group law on E is then:

P ,Q,R collinear ⇐⇒ P ⊕ Q ⊕ R = 0

Identity element: 0 = OE = (0 : 1 : 0)

Each “vertical” line x = α intersects E : y 2 = x3 + ax + b
in {(α : β : 1), (α : −β : 1),OE} where β2 = α3 + aα + b

=⇒ 	 : (x : y : 1) 7→ (x : −y : 1) is the negation map
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Elliptic Curves

The group law

Adding: R = P ⊕ Q ...and doubling: R = [2]P

If you apply this law to singular cubics, you get Gm(Fq) and Ga(Fq).

Smith (INRIA/LIX) ECC for basic public-key constructions Sibenik, 06/06/2016 25 / 45



Elliptic Curves

Computing P ⊕ Q on E : y 2 = x3 + ax + b

P = OE or Q = OE? Nothing to be done.

If P = 	Q, then P ⊕ Q = OE
Otherwise: compute P ⊕ Q using low-degree polynomial expressions

x(P ⊕ Q) = λ2 − x(P)− x(Q),
y(P ⊕ Q) = −λx(P ⊕ Q)− ν,

where

λ :=

{
(y(P)− y(Q))/(x(P)− x(Q)) if x(P) 6= x(Q),

(3x(P)2 + a)/(2y(P)) if P = Q

ν :=

{
(x(P)y(Q)− x(Q)y(P))/(x(P)− x(Q)) if x(P) 6= x(Q),

−y(P)/2 + (2ax(P) + 3b)/(2y(P)) if P = Q.
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Elliptic Curves

Complete group laws for odd-order curves

Given a short Weierstrass model E/Fp : Y 2Z = X 3 + aXZ 2 + bZ 3

with 2 - #E(Fp), the following group law works for all points in E(Fp):

(X3 : Y3 : Z3) = (X1 : Y1 : Z1)⊕ (X2 : Y2 : Z2) where

X3 = (X1Y2 + X2Y1)(Y1Y2 − a(X1Z2 + X2Z1)− 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 + X2Z1)− a2Z1Z2)

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 + X2Z1)− a2Z1Z2)

+ (Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 + X2Z1)− 3bZ1Z2)

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)

+ (X1Y2 + X2Y1)(3X1X2 + aZ1Z2)

Renes–Costello–Batina, Eurocrypt 2016:
This can be computed in 12M + 3ma + 2m3b + 23a.
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Elliptic Curves

Edwards models

Go much faster using a twisted Edwards model for E :

E/Fp : au2 + v 2 = 1 + du2v 2.

The group law on E(Fp) is completely described by

(u1, v1)⊕ (u2, v2) =

(
u1v2 + v1u2

1 + du1u2v1v2
,

v1v2 − au1u2

1− du1u2v1v2

)
with 	(u, v) = (−u, v) and (0, 1) as the identity element.

In suitable projective coordinates
we get much faster, uniform group operations.

(see Bernstein–Birkner–Lange–Peters, Hisil–Wong–Carter–Dawson, Kohel, . . . )

Restriction: twisted Edwards models require 4 | #E(Fp).
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Elliptic Curves

Group orders

We have #Ga(Fq) = q and #Gm(Fq) = q − 1.

What about #E(Fq)?

Hasse’s theorem:
If E : y 2 = x3 + ax + b is an elliptic curve over Fq, then

#E(Fq) = q + 1− t where |t| ≤ 2
√

q .

Deuring’s theorem: every t in this interval occurs
(except for some t divisible by p, when q = pn with n > 1)

Cryptographic sized q: #E(Fq) ∼ q.
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Elliptic Curves

Possible group structures

We have Ga(Fq) ∼= (Z/pZ)n for q = pn

and Gm(Fq) ∼= Z/(q − 1)Z.

What is the group structure of E(Fq)?

The possible group structures for elliptic curves
over finite fields are extremely limited.

Theorem: If E is defined over Fq, then

E(Fq) ∼= Z/d1Z× Z/d2Z

where d2 | d1 and d2 | (q − 1).
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Elliptic Curves

The ECDLP is believed to be hard

The best known Discrete Log solvers
for generic elliptic curves over Fp and Fp2

are all algorithms operating on “black box groups”

Apparent exponential “square-root” difficulty
in prime-order subgroups:

currently, the ECDLP is as hard as you can get

beats subexponential finite field DLP, RSA/factoring

=⇒ better scaling, far more security per bit

Important: This hardness is unproven,
and nobody knows why it should/should not be true
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Elliptic Curves

Bad elliptic curves

What do we mean when we say that
the DLP in a “generic” prime-order elliptic curve is hard?

Some prime-order curves are weak:
Curves over Fpn where n has a moderate-sized factor
(vulnerable to Weil descent attacks)

Anomalous elliptic curves: where #E(Fq) = q
(can map DLP into Ga(Fq))

Pairing-friendly curves (including “supersingular” elliptic curves):
where N | qk − 1 for a small k (can map DLP into Gm(Fqk ))

These weak curves are easily identified,
and easily avoided.
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Elliptic Curves

Good elliptic curves

Conclusion:
Prime-order subgroups of elliptic curves

are our best* concrete approximation
of generic groups for PKC.

If you want t bits of security,
use a (almost-) prime order E/Fp

with log2 p ∼ 2t.
*...At least until we have large quantum computers
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Elliptic Curves

Elliptic Curve vs Fp/RSA parameters

Security level Elliptic E(Fp) Gm(Fp)/RSA keylength
(bits) (log2 p) (log2 p) ratio

56 112 512 4.57

64 128 704 5.5

80 160 1024 6.4

96 192 1536 8.0

112 224 2048 9.14

128 256 3072 12.0

192 384 7680 20.0

256 512 15360 30.0
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Authenticity and signatures

4: Towards Authenticity
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Authenticity and signatures

An identification game

Suppose Alice has public-private key pair (Q = [x ]P , x).
“Alice” wants to prove her identity to Bob: ie, she possesses x .

Let’s start with a 3-move game:

Commitment: Alice chooses a random r in Z/NZ,
computes the witness R := [r ]P , and sends R to Bob.

Challenge: Bob chooses e ∈ {0, 1} at random, and sends e to Alice.

Response: Alice sends s := r − ex (mod N) to Bob.

Bob computes [s]P ⊕ [e]Q; if this is R then he thinks Alice is genuine.

Only one bit of security: Alice can cheat if she guesses e in advance
(then she can send R := [r ]P ⊕ [e]Q and s := r ).

So Bob bets that Alice can’t guess correctly t times in a row,
and they repeat the whole game t times over.
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Authenticity and signatures

Schnorr identification
The Schnorr identification protocol saves space and time

by running t of the previous games “in parallel”.

Suppose Alice has public-private key pair (Q = [x ]P , x).
Alice wants to prove her identity (possession of x) to Bob.

Commitment: Alice chooses a random r in Z/NZ,
computes the witness R := [r ]P , and sends R to Bob.

Challenge: Bob chooses a random e from [1..2t),
and sends e to Alice.

Response: Alice sends s = r − ex (mod N) to Bob.

Verification: Bob accepts Alice’s identity if [s]P ⊕ [e]Q = R .

To cheat, Alice must guess e in advance
(then she can send R := [r ]P ⊕ [e]Q and s := r).

1/2t chance of guessing =⇒ security level: t bits
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Authenticity and signatures

From identification to signatures

The Fiat–Shamir transform converts this 3-move
identification scheme into a signature scheme,

by letting a hash function play the role of the “verifier”
(...sorry, Bob!)

Let H : {0, 1}∗ → [0..2t)
be a cryptographic hash function

(we won’t need collision resistance, just preimage resistance)

and let G be a t-bit secure group:
ie, an (almost)-prime E(Fp) where log2 p ∼ 2t.
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Authenticity and signatures

Schnorr Signatures: Key Generation

To generate public-private key pairs (Q, x):

Algorithm 2 Key generation for Schnorr signatures

1: function KeyGen
2: x ← random(Z/NZ)
3: Q ← [x ]P . mult. public point by secret scalar
4: return (Q, x) ∈ E(Fp)× Z/NZ.
5: end function

Q ∈ G ⊆ E(Fp) is public, x ∈ Z/NZ is private.
Q and x each need 2t bits of storage.

Recovering x from Q =⇒ solving the DLP in G.
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Authenticity and signatures

Signing a message

To sign a message m with the key pair (Q, x):

Algorithm 3 Schnorr signature signing operation

1: function Sign(m ∈ {0, 1}∗, x ∈ Z/NZ)
2: r ← random(Z/NZ)
3: R ← [r ]P . mult. public point by secret scalar
4: e ← H(m||R)
5: s ← r − ex (mod N) . (so [s]P ⊕ [e]Q = R)
6: return (s, e) ∈ (Z/NZ)× [0..2t)
7: end function

Signatures (s, e) require 3t bits of storage.
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Authenticity and signatures

Verifying a signature

To verify a claimed signature (m, e) on a message m
against a public key Q,

Algorithm 4 Schnorr signature verification

1: function Verify((s, e), m, Q)
2: R ′ ← [s]P ⊕ [e]Q . mult. public points, scalars
3: e ′ ← H(m||R ′)
4: return e ′ = e
5: end function

DLP hardness + hardness of hash preimages
gives t bits of authenticity, integrity, and non-repudiability.

Alice and Bob can now safely exchange keys.
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The DHP and the DLP

5: Diffie–Hellman,
the “Wrong Problem”
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The DHP and the DLP

Relating the DLP and DHP

Suppose G = 〈P〉 is generic/black-box of prime order N .

DHP: Given P , [a]P , and [b]P , compute [ab]P .
DLP: Given P and [x ]P , compute x .

Obvious reduction: DLP =⇒ DHP.

What about the other way? Maurer reduction DHP =⇒ DLP.

View G as a finite field, FG ∼= FN , via [a]P ∈ FG ←→ a ∈ FN

addition: [a + b]P = [a]P ⊕ [b]P

multiplication: [ab]P = DH([a]P , [b]P) (Diffie–Hellman oracle)

inverses: [a−1]P = [aN−2]P (≤ 2 log p calls to DH)

Smith (INRIA/LIX) ECC for basic public-key constructions Sibenik, 06/06/2016 43 / 45



The DHP and the DLP

The Maurer reduction

1 Construct an E : Y 2 = X 3 + AX + B over FN such that
E(FN) = 〈(α, β)〉 is cyclic
all prime divisors of #E(FN) are less than some bound B

Key: we have (x , y) = [k](α, β) in E(FN)
if and only if ([x ]P , [y ]P) = [k]([α]P , [β]P) in E(FG).

2 Now, to solve a DLP Q = [x ]P in G;
1 Compute [x3 + Ax + B]P = DH(DH(Q,Q),Q)⊕ [A]Q ⊕ [B]P
2 Compute R := [y ]P = [

√
x3 + Ax + B]P (implicit Tonelli–Shanks)

3 Solve the DLP (Q,R) = [k]([α]P, [β]P) in E(FG) (Pohlig–Hellman)
4 Compute x from (x , y) = [k](α, β) in E(FN)

Complexity: O(
√
B · log3 N) FN-ops and calls to the DH oracle.
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The DHP and the DLP

Questionable theory, acceptable practice

The Maurer reduction doesn’t work in theory.

Tricky part: finding an E/FN with
all prime factors of #E(FN) polynomial in log N .

No guarantee that such a curve order exists
in the Hasse interval [N + 1− 2

√
N ,N + 1 + 2

√
N]!

...But in practice, things still work out
(cf. Muzereau–Smart–Vercauteren).
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